

Miniatur-Schwenkantried Ausführung mit Zahnstange/Baugrösse: 05, 1

Serie CRJ

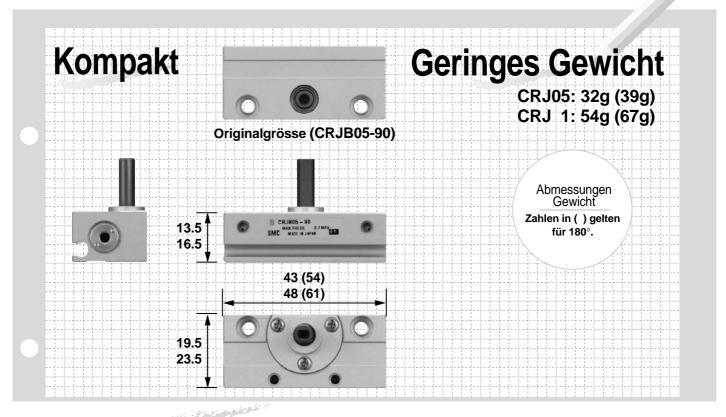
CRB

CRBU

CRJ

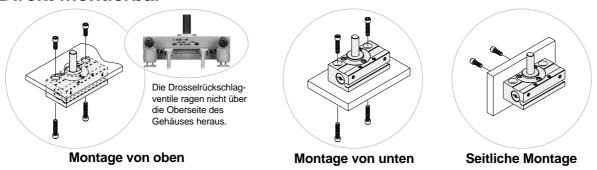
CRA1

CRQ

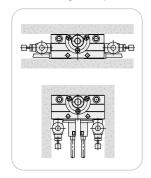

MRQ

MSQ

Miniatur-Schwenkantrieb Serie CRJ


Ausführung mit Zahnstange/Baugrösse: 05, 1

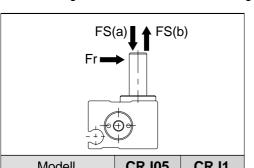
Verschiedene Montagearten


Durch die kompakte Gehäuseform wird nicht nur der Platzbedarf insgesamt reduziert, sondern auch eine Platzersparniss bei Verdrahtung und Druckluftanschluss erzielt. Dank des neuen kompakten Gehäuses ist die Montage besonders einfach.

Direkt montierbar

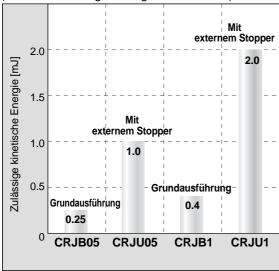
Die Richtung für den elektrischen Anschluss und den Druckluftanschluss ist entsprechend der Montageart wählbar.

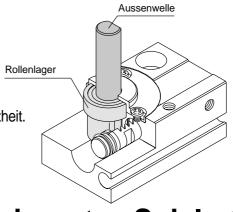
Montagebeispiele für Signalgeber und Drosselrückschlagventil



Zulässige Last verbessert

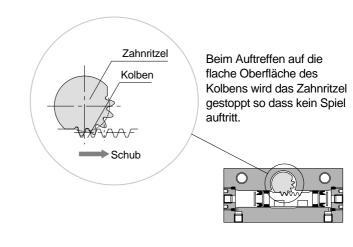
Ein grosses Rollenlager und die Aussenwelle mit grossem

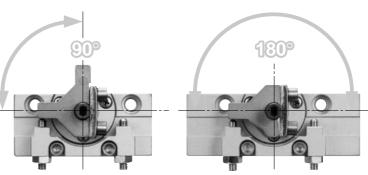

Durchmesser gewährleisten eine hohe Steifigkeit trotz der Kompaktheit.


	Modell	CRJ05	CRJ1
en Signal FS(a) FS(b)		25	30
		20	25
Zulä	FS(b)	20	25
Grösse	der Aussenwelle [mm]	Ø5	Ø6

■ Mit externem Stopper/Serie CRJU

4 bis 5 mal höhere zulässige kinetische Energie (Grundausführung im Vergleich mit CRJB)




Einstellbarer Schwenkwinkel: $\pm 5^{\circ}$ an jedem Schwenkende

Verringertes Spiel

Trotz der Bauweise mit nur einer Zahnstange wird das Spiel durch eine Spezialkonstruktion auf ein Minimum reduziert.

Variantenübersicht

Sorio		Schwen	kwinkel		Druckluft- anschluss-	Signalgabar		
Serie		90°	100°	180°	190°	Position	Signalgeber	
O	CRJB05	•	•	•	•			
Grundausführung	CRJB 1	•	•	•	•	Anschluss vorne	D-F8	
Mit externem	CRJU05	•	-	•	-	Anschluss seitlich	D-F9	
Stopper	CRJU 1	•	-	•	-			

CRB

CRBU

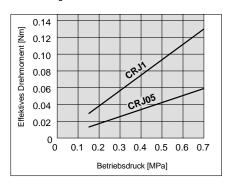
CRJ

CRA1

CRQ

MRQ

MSQ


Serie CRJ Modellauswahl

Vorgehensweise Berechnung **Beispiel** Betriebsbedingungen Listen Sie entsprechend der Einbaulage alle möglichen Betriebsbedingungen auf. Verwendetes Modell Betriebsdruck Einbaulage Fs(b) Fs(a) Belastungsart Ts [N◊m] Tf [N◊m] Ta [N◊m] Lastkonfiguration Druck: 0.4MPa Schwenkzeit t [s] Schwenkantrieb: CRJB05-90 Schwenkwinkel Einbaurichtung: Vertikal Belastungsart: Zentrische Last Ta • Bewegte Masse m [kg] Konfiguration Last 1: 20mm x 10mm (rechteckige Platte) · Abstand zwischen Mittelachse und Konfiguration Last 2: 5mm x 5mm (quadratische Platte) Schwerpunkt H [mm] Schwenkwinkel: 90° Schwenkzeit t: 0.2s Last 1 Masse m1: 0.03kg Last 2 Masse m2: 0.006kg Abstand zwischen Mittelachse und Lastschwerpunkt H: 7mm **Erforderliches Drehmoment** Bestimmen Sie, wie unten stehend Zentrische Last gezeigt, die Belastungsart und wählen Effektives Drehmoment ≥ Ts $10 \times Ta = 10 \times I \times \dot{W}$ Sie den für das erforderliche Dreh-Effektives Drehmoment ≥ (5 bis 50) x Tf = $10 \times 1.57 \times 10^{-}N \times (2 \times (D/2)/0.2X)$ moment geeigneten Antrieb. Effektives Drehmoment ≥ 10 x Ta · Statische Last: Ts = 0.0012Nm < Effektives Drehmoment Effektives Drehmoment Anm.) I ersetzt 5, der Wert für das Trägheitsmoment. • Exzentrische Last Tf • Zentrische Last: Ta Schwenkzeit Überprüfen Sie, dass die Schwenkzeit innerhalb des Schwenkzeit-Einstell-0.1 bis 0.5s/90° 0.2s/90° OK bereichs liegt. Zulässige Belastung Überprüfen Sie, dass die radiale Schublast: m x 9.8 ≤ Zulässige Belastung (0.03 + 0.006) x 9.8 = 0.35N < Zulässige Belastung Last, die Schublast und das Moment innerhalb der zulässigen Zulässige Belastung Bereiche liegen. Trägheitsmoment Ermitteln Sie das $I_1 = m x (aX + bX)/12$ $I1 = 0.03 \times (0.02X + 0.01X)/12 = 1.25 \times 10^{-}Nkg0mX$ Trägheitsmoment "I" der Last zur $I_2 = m x (aX + bX)/12 + m x HX$ $I2 = 0.006 \times (0.005X + 0.005X)/12 + 0.006 \times 0.007X$ Berechnung der Energie. $I = I_1 + I_2$ = 0.32 x 10⁻Nkg◊mX $I = 1.25 \times 10^{-}N + 0.32 \times 10^{-6}$ Trägheitsmoment = 1.57 x 10⁻Nkg◊mX Kinetische Energie $1/2 \times I \times X \le Zulässige Energie$ Überprüfen Sie, dass die kinetische $1/2 \times 1.57 \times 10^{-6} \times (2 \times (\pi/2)/0.2) X$ Energie der Last innerhalb des W = 2q/t (: Winkelendgeschwindigkeit) = 0.00019J = 0.19mJ < Zulässige Energie OK zulässigen Bereichs liegt. q: Schwenkwinkel [rad] t: Schwenkzeit [s] Zulässige kinetische Energie/Schwenkzeit

Effektives Drehmoment

							[Nm]			
Baugrösse		Betriebsdruck [MPa]								
	0.15	0.2	0.3	0.4	0.5	0.6	0.7			
05	0.013	0.017	0.026	0.034	0.042	0.050	0.059			
1	0.029	0.038	0.057	0.076	0.095	0.11	0.13			

Anm.) Die Werte der effektiven Drehkraft sind repräsentative Werte und werden nicht gewährt. Sehen Sie diese nur als Richtwerte an.

CRB

CRBU

CRJ

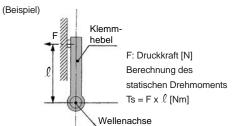
CRA1

CRQ

MRQ

MSQ

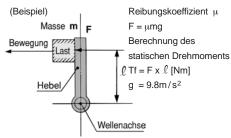
mou


MSU

Belastungsarten

Statische Last: Ts

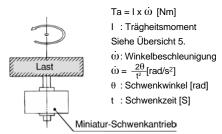
Belastung durch den Klemmhebel; erfordert nur Druckkraft.


Wird in der Berechnung die Masse des Klemmhebels selbst (siehe Zeichnung) berücksichtigt, sollte diese als zentrische Last betrachtet werden.

• Exzentrische Last: Tf

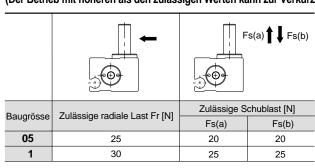
Eine durch äussere Kräfte wie Reibung oder Schwerkraft beeinflusste Belastung. Da das Ziel ist, die Last zu bewegen, und eine Geschwindigkeitsregulierung erforderlich ist, sollte als Sicherheitsfaktor das 3- bis 5-fache des effektiven Drehmoments berücksichtigt werden. Effektives Drehmoment des Antriebs ≥ (3 bis 5) x Tf

Wird in der Berechnung die Masse des Hebels selbst (siehe Zeichnung) berücksichtigt, sollte diese als zentrische Last betrachtet werden.

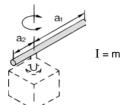

•Zentrische Last:

Vom Antrieb zu drehende Last.

Da das Ziel ist, die Last zu drehen, und eine Geschwindigkeitsregulierung erforderlich ist, sollte als Sicherheitsfaktor min. das 10-fache des effektiven Drehmoments berücksichtigt werden.

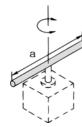

Effektives Drehmoment des Antriebs \geq S x Ta (S ist min. das 10-fache)

Berechnung des Trägheitsmoments


Zulässige Last

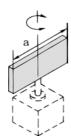
Achten Sie darauf, dass die auf die Welle wirkende Last und Drehkraft die in der Tabelle angegebenen zulässigen Werte nicht übersteigen. (Der Betrieb mit höheren als den zulässigen Werten kann zur Verkürzung der Lebensdauer, sowie zu Spiel der Welle und verringerter Präzision führen.)

1. Dünne Welle


Position der Drehachse: vertikal zur Welle gelagert

$$I = m_1 x \frac{a_1^2}{3} + m_2 x \frac{a_2^2}{3}$$

2. Dünne Welle


Position der Drehachse: zentrisch gelagert

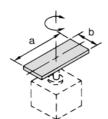
$$I = m x \frac{a^2}{12}$$

3. Dünne rechtwinklige Platte (hochkant)

Position der Drehachse: zentrisch gelagert

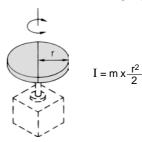
$$I = m x \frac{a^2}{12}$$

4. Dünne rechtwinklige Platte

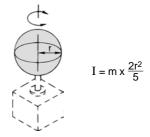

Position der Drehachse: Vertikal zur Platte, exzentrisch gelagert (gilt auch für Platte grösserer Stärke)

$$I = m_1 x \frac{4a_1^2 + b^2}{12} + m_2 x \frac{4a_2^2 + b^2}{12}$$

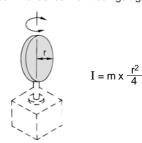
5. Dünne rechtwinklige Platte


Position der Drehachse: Zentrisch gelagert und vertikal zur Platte (gilt auch für Platte grösserer Stärke)

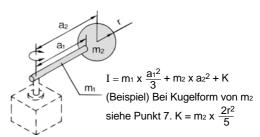
$$I = m x \frac{a^2 + b^2}{12}$$


6. Zylinder (inkl. dünne runde Platte)

Position der Drehachse: zentrisch gelagert


7. Kugel

Position der Drehachse: zentrisch gelagert



8. Dünne, runde Scheibe

Position der Drehachse: zentrisch gelagert

9. Last am Hebelende

10. Getriebeübertragung

- 1. Ermitteln Sie das Trägheitsmoment I_B für die Wellendrehung (B).
- 2. Anschliessend wird I_{B} eingesetzt, um das Trägheitsmoment I_{A} für die Wellendrehung (A) zu berechnen: $I_{\text{A}} = (\frac{a}{b})^2 \ x \ I_{\text{B}}$

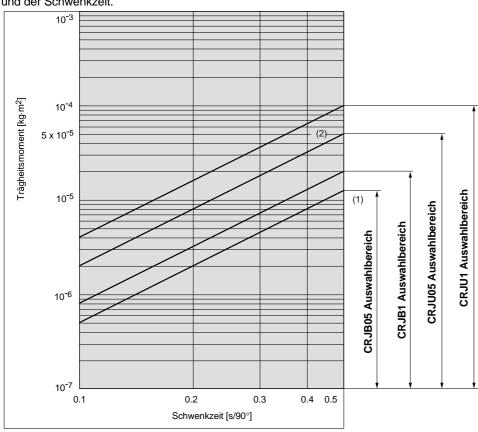
Kinetische Energie/Schwenkzeit

Selbst wenn das zur Drehung der Last erforderliche Drehmoment klein ist, können Schäden an den internen Teilen durch die Trägheitskraft der Last verursacht werden.

Berücksichtigen Sie bei der Modellauswahl das Trägheitsmoment der Last und die Schwenkzeit während des Betriebs. (Verwenden Sie hierzu die Tabellen für das Trägheitsmoment und die Schwenkzeit.)

1. Zulässige kinetische Energie und Schwenkzeit-Einstellbereich

Ermitteln Sie aus unten stehender Tabelle die geeignete Schwenkzeit innerhalb des korrekten Einstellbereichs für konstanten Betrieb.


Grösse			Zulässige kinetische Energie [mJ]	Zulässige Schwenkzeit - Einstellbereich [s/90°]
05	Grundausführung	CRJB05	0.25	
03	Mit externem Stopper	CRJU05	1.0	0.1 bis 0.5
4	Grundausführung	CRJB 1	0.40	0.1 bis 0.5
•	Mit externem Stopper	CRJU 1	2.0	

2. Berechnung des Trägheitsmoments

Da die Berechnungsformel für das Trägheitsmoment von der Lastkonfiguration abhängt, muss die geeignete Formel auf der vorherigen Seite (Übersicht 5) ermittelt werden.

3. Modellauswahl

Wählen Sie das geeignete Modell aus der folgenden Tabelle unter Verwendung des vorher berechneten Trägheitsmoments und der Schwenkzeit.

1. <Lesen des Diagramms>

¥ Trägheitsmoment 1 x 10⁻⁵kg·m²

¥ Schwenkzeit 0.5s/90°

CRJB05 wird in diesem Fall gewählt.

2. <Berechnungsbeispiel>

Lastkonfiguration: Zylinder mit Radius 0.05m und Masse 0.04kg

Schwenkzeit: 0.4s/90°

 $I = 0.04 \times 0.05^2/2 = 5 \times 10^{-5} \text{kg} \cdot \text{m}^2$

Ermitteln Sie in der Tabelle des Trägheitsmoments und der Schwenkzeit den Schnittpunkt der entsprechenden Linien für $5 \times 10^{-5} \text{ kg} \cdot \text{m}^2$ auf der vertikalen Achse (Trägheitsmoment) und für $0.4\text{s}/90^\circ$ auf der horizontalen Achse (Schwenkzeit).

Da sich der Schnittpunkt im Auswahlbereich des CRJU1 befindet, sollte der CRJU1

Schwenkantrieb gewählt werden.

CRB

CRBU

CRJ

CRA1 CRQ

MRQ

MSQ

MOG

Miniatur-Schwenkantrieb Druckluftverbrauch

Der Druckluftverbrauch gibt das Luftvolumen an, das durch die Hin-und Herbewegung im Inneren des Miniatur-Schwenkantriebs, sowie in der Leitung zwischen Antrieb und Schaltventil verbraucht wird. Dieses wird zur Auswahl des Kompressors sowie zur Berechnung dessen laufender Kosten benötigt.

* Der erforderliche Druckluftverbrauch (QcR) für einen Zyklus eines einzelnen Miniatur-Schwenkantriebs ist in der unten stehenden Tabelle dargestellt und kann zur Vereinfachung der Berechnung herangezogen werden.

Formeln

QCR =
$$2V \times \left(\frac{P + 0.1}{0.1} \right) \times 10^{-3}$$

QCP = $2 \times a \times 1 \times \frac{P}{0.1} \times 10^{-6}$
QC = QCR + QCP

Qc = Erforderlicher Druckluftverbrauch für einen Zyklus des Miniatur-Schwenkantriebs [1,nmin]

Bei der Auswahl des Kompressors ist darauf zu achten, dass dieser über eine ausreichende Reserve für den gesamten Druckluftverbrauch aller nachgeschalteten pneumatischen Antriebe verfügt. Dies wird beeinflusst von Faktoren wie undichten Leitungen, dem Verbrauch von Ablass- und Pilotventilen, sowie von der Verringerung des Luftvolumens durch Temperaturabfall.

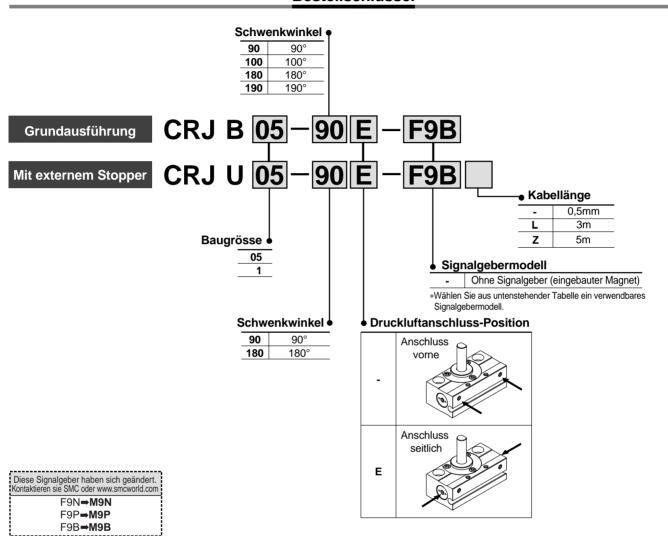
Formel

Qc2 = Qc x n x Anzahl der Antriebe x Reservefaktor

Qc2 = Ausgangsdurchfluss des Kompressors n = Zyklen des Antriebs pro Minute

Innenquerschnitt von Schläuchen und Stahlleitungen

Nenngrösse	Nenngrösse Aussen-Ø [mm]		Innen- Querschnitt a [mm²]
T 0425	4	2.5	4.9
T 0604	6	4	12.6
TU 0805	8	5	19.6
T 0806	8	6	28.3
1/8B	-	6.5	33.2
T 1075	10	7.5	44.2
TU 1208	12	8	50.3
T 1209	12	9	63.6
1/4B	-	9.2	66.5
TS 1612	16	12	113
3/8B	-	12.7	127
T 1613	16	13	133
1/2B	-	16.1	204
3/4B	-	21.6	366
1B	-	27.6	598


Druckluftverbrauch

						[Druckluftverbrauch	des Schwenkantri	ebs: QCR [l _n min]		
	Schwenk-	Innen-			E	Betriebsdruck [MP	a]				
Baugrösse	winkel	winkel	winkel	volumen [cm ³]	0.15	0.2	0.3	0.4	0.5	0.6	0.7
0.5	90°	0.15	0.00074	0.00089	0.0012	0.0015	0.0018	0.0021	0.0024		
05	180°	0.31	0.0015	0.0018	0.0025	0.0031	0.0037	0.0043	0.0049		
1	90°	0.33	0.0016	0.0020	0.0026	0.0033	0.0039	0.0046	0.0052		
	180°	0.66	0.0033	0.0039	0.0052	0.0065	0.0078	0.0091	0.010		

Miniatur-Schwenkantrieb

Serie CRJ

Bestellschlüssel

Verwendbare Signalgeber

	· · · · · · · · · · · · · · · · · · ·																
		Elektri-				nungsve	ersorgung	ersorgung Signalgebei		Anschlu	sskabellä	nge [m]*					
Тур	Sonderfunktion	scher	Betriebs-		Anschluss DC		AC	Elektrisch	er Eingang	0.5	3	5 (Z)					
		Eingang	anzeige	(Ausgang)			٨٥	vertikal	axial	(-)	(L)	(Z)					
ē				2 Drobt (NIDNI)				-	F9N	•	•	-					
ge				3-Draht (NPN)				F8N	-	•	•	-					
<u>a</u>	Signalgeber -	_		3-Draht (PNP)	(DNID)			-	F9P	•	•	-					
Sig		Finge-	Einge-	3-Diant (Five)	3-Diant (FINE)				F8P	-	•	•	-				
		aossene	Ja	2-Draht	2-Draht	2-Draht	0 Dk4	2 Drobt	24V	12V	- [-	F9B	•	•	-	
SC		Kabel								F8B	-	•	•	-			
ë	Diagnoseanzeige (2-farbige Anzeige)	3-[3-Draht (NPN)									-	F9NW	•	•	-
호				3-Draht (PNP)				-	F9PW	•	•	-					
ä	(2 Idioigo / Ilizoigo)			2-Draht				-	F9BW	•	•	-					

* Anschlusskabellänge: 0.5m ..

3m L

(Beispiel) F9N (Beispiel) F9NL **CRBU**

CRB

CRA1

CRQ

MRQ

MSQ

Serie CRJ

Technische Daten

Douges and Audführung	0	5	1		
Baugrösse/Ausführung	Grundausführung	Grundausführung Mit externem Stopper Grundausfüh		Mit externem Stopper	
Medium		Druckluft (lebens	dauergeschmiert))	
Max. Betriebsdruck		0.7	MРа		
Min. Betriebsdruck		0.15	MPa		
Umgebungs- und Medientemperatur		0° bis 60°C (r	nicht gefroren)		
Schwenkwinkel Anm.)	90 ^{+8°} ₀ , 100 ^{+10°} ₀ 180 ^{+8°} ₀ , 190 ^{+10°} ₀	90, 180	90 ^{+8°} ₀ , 100 ^{+10°} ₀ 180 ^{+8°} ₀ , 190 ^{+10°} ₀	90, 180	
Winkeleinstellbereich	- ±5° an jedem Schwenkende		- ±5° an jedem Schwenkende		
Kolben-Ø	Ø6 Ø			0 8	
Anschlussgrösse	M3				

 $Anm.)\ W\"{a}hlen\ Sie\ einen\ Antrieb\ mit\ externem\ Stopper,\ um\ eine\ optimale\ Schwenkwinkelpr\"{a}zision\ zu\ erzielen.$

Zulässige kinetische Energie und Schwenkzeit-Einstellbereich

Baugrösse/Ausführung			Zulässige kinetische Energie [mJ]	Schwenkzeit-Einstellbereich für konstanten Betrieb [s/90°]
0.5	Grundausführung	CRJB05	0.25	
05	Mit externem Stopper	CRJU05	1.0	0.1 bis 0.5
	Grundausführung	CRJB 1	0.40	0.1 018 0.5
1	Mit externem Stopper CRJU 1		2.0	

Gewicht

Ausführung/Ba	ugrösse	Modell	Gewicht [g] Anm.)
		CRJB05-90	00
	05	CRJB05-100	32
	03	CRJB05-180	20
0		CRJB05-190	39
Grundausführung	1	CRJB 1-90	54
		CRJB 1-100	54
		CRJB 1-180	67
		CRJB 1-190	07
	05	CRJU05-90	47
Mit externem	00	CRJU05-180	53
Stopper	1	CRJU 1-90	70
	ı	CRJU 1-180	81

Anm.) Die obigen Werte enthalten nicht das Gewicht des Signalgebers.

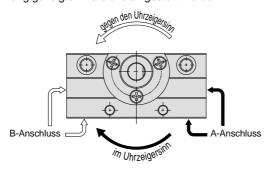
CRB

CRBU

CRJ

CRA1

CRQ


MRQ

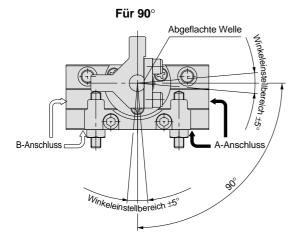
MSQ

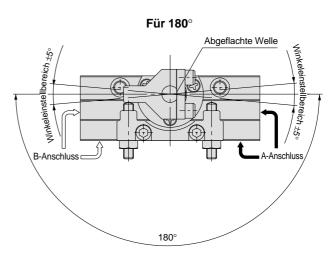
MSU

Schwenkrichtung und Schwenkwinkel

- *Bei Druckbeaufschlagung am Anschluss A dreht sich die Welle im Uhrzeigersinn, bei Druckbeaufschlagung am Anschluss B gegen den Uhrzeigersinn.
- *Bei Antrieben mit externem Stopper kann das Schwenkende durch Justieren der Anschlagschraube innerhalb des in der Zeichnung gezeigten Bereichs eingestellt werden.

Grundausführung

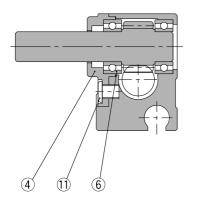

B-Anschluss

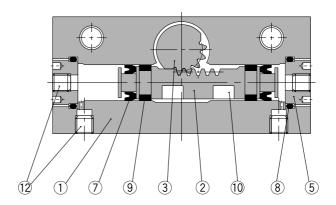

Schwenkbereich für Aschluss

Schwenkbereich für Aschluss

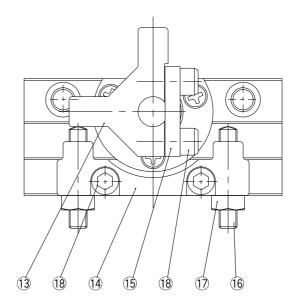
Abgeflachte Welle Abgeflachte Welle A-Anschluss Schwenkbereich für 180° Schwenkbereich für 190° Schwenkbereich für 190°

Mit externem Stopper


Anm.) * Die Zeichnung zeigt den Schwenkbereich des abgeflachten Teils der Welle.


* Die Position des abgeflachten Teils zeigt das Schwenkende bei Drehbewegung gegen den Uhrzeigersinn bei 90° und 180°-Einstellung des Schwenkwinkels.

Serie CRJ


Konstruktion

Grundausführung/CRJB

Mit externem Stopper/CRJU

Stückliste

Pos.	Bezeichnung	Material
1	Gehäuse	Aluminium
2	Kolben	Rostfreier Stahl
3	Welle	Rostfreier Stahl
4	Sicherungsring für Lager	Aluminium
5	Deckel	Aluminium
6	Lager	Lagerstahl
7	Kolbendichtung	NBR
8	O-Ring	NBR
9	Kolbenführungsband	Kunststoff

Pos.	Bezeichnung	Material
10	Magnet	Magnetmaterial
11	Rundkopf-Kreuzschlitzschraube	Federstahl
12	Innensechskantschraube	Rostfreier Stahl
13	Stopper	Chrommolybdänstahl
14	Halter	Aluminium
15	Stopperhalter	Stahl
16	Innensechskantschraube	Federstahl
17	Sechskantmutter	Federstahl
18	Innensechskantschraube	Rostfreier Stahl

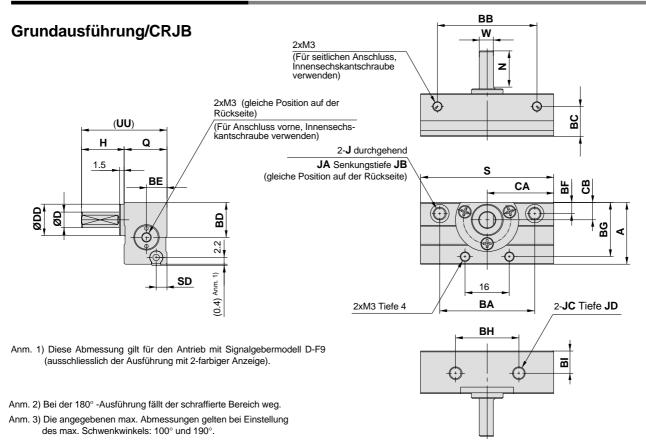
^{*} Die Einbaulage der Innensechskantschrauben (Pos. 12) variiert in Abhängigkeit von der Position des Druckluftanschlusses.

CRB

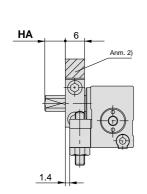
CRBU

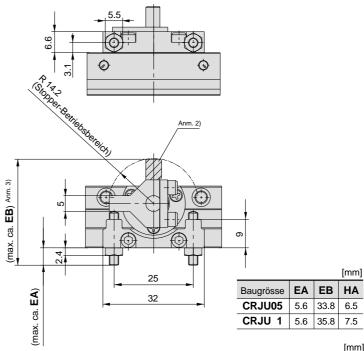
CRJ

CRA1

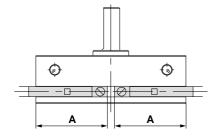

CRQ

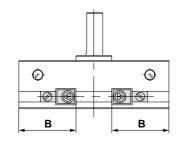
MRQ


MSQ

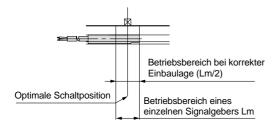

MSU

Abmessungen/Baugrösse 05, 1


Mit externem Stopper/CRJU



																										Įr	mmj
Baugrösse	Schwenk- Winkel	Α	ВА	вв	вс	BD	BE	BF	BG	вн	ВІ	СА	СВ	D	DD	J	JA	JB	JC	JD	Н	N	Q	S	SD	υU	W
CRJB05	90°	19.5	30	32.4	9.5	11	6.5	3.5	17.1	20	7	21.5	5.5	5g6	10h9	M4	5.8	3.5	M4	5	14.5	12.5	13.5	43	3.4	28	4.5
	180°			43.4								27		_										54			
CRJB 1	90°	23.5	35	37.4	12.5	1/	۵	4.5	21.1	22	8.5	24	7.5	6g6	14h9	M5	7.5	4.5	M5	6	15.5	13.5	16.5	48	5.9	32	5.5
CK3B I	180°	25.5	33	50.4	12.0	'-	"	4.5	21.1	~~	0.5	30.5	7.5	logo	14113	IVIO	7.5	4.5	IVIO	"	13.3	13.3	10.5	61	5.5	JZ	3.3


Signalgeber Einbaulage am Schwenkende

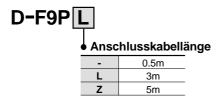
Für D-F9

Für D-F8

_	Schwenk-	[D-F9 Signal	geber	D-F8 Signalgeber			
Baugrösse	winkel	Α	Schwenk- bereich (θm)	Betriebs- bereich	В	Schwenk- bereich [θm]	Betriebs- bereich	
05	90°	20.5	40°	10°	16.5	20°	100	
03	180°	23.2	40	10	19.2	20"	10°	
1	90°	22.4	30°	10°	18.4	450	100	
1	180°	25.6	30	10	21.6	15°	10°	

Schwenkbereich (θ m): Wert für den Betriebsbereich Lm eines einzelnen Signalgebers umgewandelt in Winkelbereich.

Betriebsbereich: Signalgeber-Hysteresewert umgewandelt in Winkelmass


Serie CRJ Allgemeine technische Daten der Signalgeber

Allgemeine technische Daten der Signalgeber

Тур	Elektronischer Signalgeber	
Betriebsdauer	max. 1ms	
Schockbeständigkeit	1000m/s ²	CRB
Isolationswiderstand	50M $Ω$ oder mehr bei 500 VDC (zwischen Anschlusskabel und Gehäuse)	CRBU
Prüfspannung	1000VAC über 1min. (zwischen Anschlusskabel und Gehäuse)	CRJ
Umgebungstemperatur	-10° bis 60°C	CRA1
3 3 1		CRQ
Schutzart	IEC529 Standard IP67 JISC0920 wasserfeste Konstruktion	

Anschlusskabellängen

Angabe der Anschlusskabellänge (Beispiel)

Anm. 1) Anschlusskabellänge Z: Signalgeber mit 5m Kabellänge

Anm. 2) Die Standardlänge der Anschlusskabel für wasserfeste elektronische Signalgeber mit 2-farbiger Anzeige beträgt 3 Meter. (0.5m ist nicht verfügbar.)

Änderung der Kabelfarbe

Die Farben der Anschlusskabel der SMC-Signalgeber wurden gemäss dem Standard IEC947-5-2 für alle ab September 1996 hergestellten Serien geändert. Siehe unten stehende Tabellen.

Besondere Vorsicht hinsichtlich der Kabelpolaritäten ist geboten, solange neben der neuen auch noch die alte Farbordnung verwendet wird.

2-Draht

	Alt	Neu
(+) Ausgang	Rot	Braun
(-) Ausgang	Schwarz	Blau

3-Draht

	Alt	Neu
(+) Spannungsversorgung	Rot	Braun
GND Spannungsversorgung	Schwarz	Blau
Ausgang	Weiss	Schwarz

MSQ

MSU

Elektronischer Signalgeber mit Diagnoseausgang

	Alt	Neu					
(+) Spannungsversorgung	Rot	Braun					
GND Spannungsversorgung	Schwarz	Blau					
Ausgang	Weiss	Schwarz					
Diagnoseausgang	Gelb	Orange					

Elektronischer Signalgeber mit Diagnoseausgang mit Signalhaltung

	Alt	Neu
(+) Spannungsversorgung	Rot	Braun
GND Spannungsversorgung	Schwarz	Blau
Ausgang	Weiss	Schwarz
Diagnoseausgang mit Signalhaltung	Gelb	Orange

Serie CRJ/ Produktspezifische Sicherheitshinweise

Vor Inbetriebnahme durchlesen.

Einstellung des Schwenkwinkels

△Achtung

Der Schwenkantrieb mit externem Stopper ist standardmässig mit einer Schwenkwinkel-Einstellschraube zur Justierung des Schwenkwinkels ausgestattet.

Baugrösse	Winkeleinstellung pro Umdrehung der Winkeleinstellschraube
05	2.3°
1	2.3°

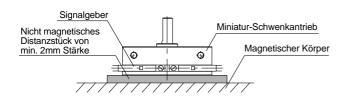
Der Schwenkwinkel-Einstellbereich für den Antrieb mit externem Stopper beträgt $\pm 5^{\circ}$ an jedem Schwenkende. Beachten Sie bitte, dass eine Justierung über diesen Bereich hinaus zu Funktionsstörungen führen kann.

Montage von Drosselrückschlagventil und Steckverbindungen

Achtung

Es wird ein M3 Druckluftanschluss verwendet. Sollen das Drosselrückschlagventil und die Steckverbindungen direkt angeschlossen werden, können folgende Serien verwendet werden.

- Drosselrückschlagventil AS12 1F/Winkel-Typ AS13 1F/Universal-Typ
- Steckverbindung
 Miniatur-Steckverbindungen Serie KJ
- Reduzierbuchsen Serie M3


Signalgebermontage

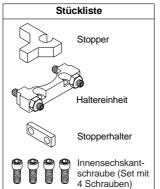
⚠ Achtung

Halten Sie bei Verwendung eines Schwenkantriebs der Baugrösse 05 mit Signalgeber einen Mindestabstand von 2mm zwischen dem magnetischen Körper und der Unterseite des Antriebs ein.

Ist der Abstand zum magnetischen Körper kleiner als 2mm kann dessen magnetische Anziehungskraft Fehlfunktionen des Signalgebers verursachen.

* Wird die Bodenfläche zur Montage verwendet, ist ein nicht magnetisches Distanzstück (z. B. aus Aluminium) erforderlich (siehe folgende Zeichnung).

Wartung

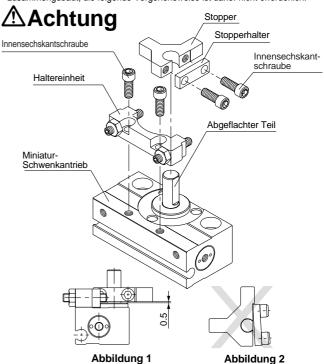

Achtung

Für dieses Produkt sind Spezialwerkzeuge erforderlich. Es kann daher nicht zur Wartung zerlegt werden.

Externe Stoppereinheit

Achtung

Bestellen Sie die externe Stoppereinheit mit den unten stehenden Bestell-Nr.


Modell	Bestell-Nr.
CRJU05- 90	P531010-1
CRJU05-180	P531010-2
CRJU 1- 90	P531020-1
CRJU 1- 180	P531020-2

Anm. 1) Die externen Stoppereinheiten für 180° sind nicht für 90° -Miniatur-Schwenkantriebe verwendbar.

Anm. 2) Bei Einsatz von externen Stoppern für 90°, müssen Miniatur-Schwenkantriebe mit einem Schwenkbereich von 100° verwendet werden und für 180°, Antriebe mit einem Schwenkbereich von 190°.

Montage des externen Stoppers

*Die Antriebe mit externem Stopper (Modell CRJU) sind werkseitig zusammengebaut; die folgende Vorgehensweise ist daher nicht erforderlich.

Montieren Sie den Stopperhalter vorübergehend an den Stopper. Positionieren Sie anschliessend den Stopperhalter an der abgeflachten Stelle und ziehen Sie mit den Innensechskantschrauben fest.

Lassen Sie, wie in Abbildung 1 ersichtlich, ein Spiel von ca. 0.5mm zwischen dem Stopper und dem Miniatur-Schwenkantrieb frei.

Ziehen Sie die Innensechskantschrauben gleichmässig an, um eine ungleichmässige Montage des Stopperhalters wie in Abbildung 2, zu vermeiden.

Achten Sie darauf, dass beim Festziehen keine übermässige Kraft auf die Welle wirkt.

2 Befestigen Sie die Haltereinheit mit den Innensechskantschrauben.

	Anzugsdrehmoment [Nm]
Innensechskantschrauben	0.8 bis 1.2

